CLINICAL SCIENCE

Machine Learning Model for Predicting Visual Acuity
Improvement After Intrastromal Corneal Ring Surgery in
Patients With Keratoconus
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Background: Keratoconus is a progressive, degenerative corneal
disease that can lead to significant visual impairment. The intra-
stromal ring segment implantation procedure is effective in reshap-
ing the cornea and improving vision. However, vision does not
improve postoperatively in all operated eyes, and the results vary
widely among patients, making it challenging to predict post-
operative visual gain.

Purpose: This study investigated the potential of machine learning
in predicting postoperative visual acuity in keratoconus patients
undergoing intrastromal ring segment implantation with the aim of
enhancing surgical decision-making.

Methods: This retrospective study analyzed 120 eyes of 102
patients with keratoconus who underwent ring segment implantation
(1 symmetric or asymmetric segment, 150-300 pum thick, 150
degrees, or 160 degrees-arc). Preoperative and postoperative refrac-
tion, corneal topography, and tomographic data were collected.
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Various models were trained to predict postoperative visual acuity
improvements.

Results: The models demonstrated excellent performance, with
XGBoost achieving perfect results in predicting whether vision will
improve after surgery (R> = 1.0, Youden Index = 1.0; all test
observations being correctly classified). The CatBoost model achieved
an R? of 0.59 [0.7-line mean absolute error (MAE)] for predicting
postoperative visual acuity, an R? of 0.76 (MAE, 1.08 D) for predicting
keratometry, and an R? of 0.54 (MAE, 0.29) for predicting corneal
asphericity. Key features for accurate predictions included preoperative
keratometry values (K1, K2, Kmax), corneal asphericity, and visual
acuity, whereas segment characteristics featured low importance.

Conclusions: This study shows the strong potential of machine
learning for selecting candidates for surgery and predicting post-
operative visual improvements after ring segment implantation in
keratoconus eyes.

Key Words: keratoconus, intrastromal corneal ring segments,
corneal topography, machine learning, artificial intelligence
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eratoconus is a progressive, noninflammatory corneal

disease characterized by thinning and ectasia that may
progress to irregular astigmatism, myopia, and vision loss if
left untreated.!»? It typically manifests during adolescence and
is influenced by genetic predisposition, mechanical eye
rubbing, and ocular allergies.>* While early stages can be
managed with corrective lenses or rigid contact lenses,
advanced cases often require more invasive surgical inter-
ventions, including corneal collagen crosslinking, intrastro-
mal ring segment implantation, and, in more severe cases,
corneal transplantation.

Intrastromal ring segments represent a safe, reversible,
and stable surgical procedure that can correct corneal ectasia
by flattening the cornea and improving its shape.®’ Intra-
corneal ring segment can reduce the need for more invasive
treatments, such as corneal grafts, in patients with keratoco-
nus.® These crescent-shaped polymethylmethacrylate im-
plants are placed in the corneal stroma and have been
shown to reshape the cornea and improve visual function
effectively.® Recently, donor allogeneic corneal tissue has been
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proposed to produce intrastromal ring segments.!® A major
challenge in using intrastromal ring segments is the unpredict-
ability of patient outcomes. Individual variations in corneal
biomechanics, healing responses, and disease progression make
it difficult for surgeons to consistently forecast the refractive,
topographic, and biomechanical results after surgery.!!

Recent advancements in artificial intelligence (AI),!>"1
particularly in machine learing (ML), have opened new
possibilities in the field of ophthalmology.!® Al-driven ap-
proaches, such as artificial neural networks, have already been
applied in diagnostics and predictive modeling across various
medical fields. ANNs mimic the learning processes of biological
neural systems, allowing them to analyze large datasets, recognize
patterns, and develop predictive models. By training on real-life
cases stored in databases, these networks can generalize knowl-
edge and make predictions for new cases, which makes them
highly valuable in medical decision-making.!”-!3

In ophthalmology, ML algorithms have shown great
promise in detecting and classifying keratoconus using corneal
imaging and diagnostics data.'®2® Beyond keratoconus, Al has
been applied to a broad spectrum of anterior segment diseases,
including infectious keratitis, corneal transplantation, cataract
surgery, angle-closure glaucoma, and iris tumors, assisting in
diagnosis, staging, and treatment planning.?” For example, in
infectious keratitis, convolutional neural networks (CNNs) have
been trained on slittamp and OCT images to automatically
detect and classify corneal infections, improving diagnostic
accuracy. In refractive and cataract surgery, Al models such as
gradient boosting machines and neural networks have been
applied to optimize intraocular lens power calculations by
learning complex relationships between biometric parameters
and postoperative refractive outcomes, surpassing the accuracy
of traditional formulas.?8-2°

However, using ML to predict surgical outcomes, such
as visual acuity improvements following ring segment
implantation, remains relatively underexplored. Predicting
postoperative outcomes is particularly important for optimiz-
ing treatment plans and improving patient care, as it allows
surgeons to better tailor the procedure to each patient’s needs.

This study addresses this gap by developing a machine
learning model to predict visual acuity gains in patients with
keratoconus after ring segment implantation. By using pre-
operative and postoperative refractive and corneal topography
data, the model aims to provide personalized predictions for the
best possible outcomes, considering the unique characteristics of
each patient’s corneal structure. This approach could enable
selecting patients for surgery, more precise planning of
procedures, and optimizing the segment’s number, placement,
and configuration to achieve the most favorable refractive and
topographical results. It could revolutionize surgical decision-
making in keratoconus treatment, significantly improving patient
outcomes and reducing variability in postoperative results.

MATERIALS AND METHODS
Study Design and Population

This retrospective, single-center study included 120
eyes of 102 patients with keratoconus who underwent ring
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segment implantation between January 2021 and January
2024 at the French National Vision Hospital (Hopital
National de la Vision des 15-20), Paris, France.

Inclusion criteria were the following: patients with
a diagnosis of keratoconus who had undergone ring segment
implantation with either symmetric (FERRARA RING, AJL
Ophthalmic, Spain) or asymmetric (AJL PRO+, AJL Oph-
thalmic, Spain; INTRASEG, EmmetropR, France) segments,
with an arc of 150 degrees or 160 degrees and a thickness
between 150 and 300 um, complete preoperative and post-
operative corneal topography/tomography data available.
Asymmetric segments labeled as 150 pm or 200 pum feature
a 100-um-thick thin end, and segments labeled as 250 pm or
300 pum feature a 150-pum-thick thin end. The ring was chosen
based on the manufacturer’s nomograms (Intraseg, Ferrara,
and AJL) and mainly the surgeon’s clinical judgment.
Exclusion criteria included patients with other corneal
disorders (ie, pellucid marginal degeneration or post-LASIK
ectasia), those with incomplete postoperative data, and those
who underwent other simultaneous corneal procedures such
as cross-linking.

Ethics Statement

The described research adhered to the tenets of the
Declaration of Helsinki. All patients were included in the
CCK-CONE cohort study following informed consent. Ethics
committee approval was obtained from the INDS (Institut
National des Données de Santé, #255645) following approval
by the CEREES (February 13, 2020). The data protection
process agreed with the reference methodology MR-004, and
the CNIL approved the conformity declaration (March 23,
2020). The cohort protocol is available on the Health Data
Hub (https://www.health-data-hub.fr/projets/observatoire-de-
la-prise-en-charge-des-patients-presentant-un-keratocone-du-
centre-de).

Surgical Technique

All procedures were performed under topical anesthe-
sia. The center of the pupil was marked, and a disposable
suction ring was positioned accordingly. A femtosecond laser
(Wavelight FS 200, Alcon Laboratories, Inc) created a channel
at a depth of 75% of the corneal thickness. The incision was
aligned with the axis of the steepest keratometry. The inner
and outer diameters of the channel were, respectively, on
average, 4.59 mm (*0.26) and 5.81 mm (*+0.23) for 5 mm
ring segments, and 5.71 mm (*0.24) and 7.47 mm (£0.53)
for 6 mm ring segments, depending on the preferences of each
surgeon.

The laser settings were customized for the specific ring
segment type. The energy used to create the channel and
incision was set at 1.20 mJ. The segments were implanted
using forceps under sterile conditions. The final placement of
the segments was adjusted using a Sinskey hook.

Postoperative care included a combination of antibiotic
(tobramycin 3 mg/mL) and steroid (dexamethasone 1 mg/mL)
eye drops (Tobradex; Alcon Laboratories Inc., Fort Worth,
TX), applied 3 times daily for 2 weeks. In addition, patients
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were instructed to use tear substitutes (Vismed, Horus
Pharma, Nice, France) for 1 month following the procedure.

Data Collection
Preoperative and postoperative data were collected
from 2 primary sources

Refractive Data

This included uncorrected visual acuity, distance-
corrected visual acuity (DCVA), spherical equivalent, cylin-
der, and axis measurements obtained through subjective
refraction. Visual acuity was measured using a decimal chart
and converted to logarithm of the minimum angle of
resolution (LogMAR) units.

Corneal Topography/Tomography Data

Corneal topography data were collected using the MS-
39 corneal topographer/tomographer (CSO, Firenze, Italy),
which combines a Placido disc-based topographer and
a spectral domain optical coherence tomographer, and
provides detailed measurements of corneal curvature [mean
keratometry in the 3 mm central zone (Kmean), keratometry
in the flattest meridian for the 3 mm central zone (K1),
keratometry in the steepest meridian for the 3 mm central
zone (K2), and maximum keratometry (Kmax)].

In addition, we measured the minimal corneal thickness
(ThkMin) and corneal aberrations. The MS-39 software
EyeTop2005 (CSO) automatically converts the corneal
elevation profile into corneal wavefront data using Zernike
polynomials, expanded to the seventh order. In this study, the
root mean square values for a 5 mm pupil were calculated for
the following types of aberrations: total, higher-order aberra-
tions, particularly coma, and asphericity (Q-value).

The MS-39 generates CSV files containing quantitative
data for various corneal parameters and topography maps
visually depicting corneal curvature and elevation. The MS-
39 device generates 16 different topography maps, covering
various aspects of corneal geometry and refractive properties,
that is, Anterior Tangential Curvature (mm), Anterior Sagittal
Curvature (mm), Anterior Gaussian Curvature (mm), Anterior
Frontal Refractive Power (D), Posterior Frontal Refractive
Power (D), Equivalent Refractive Power (D), Corneal Thick-
ness (um), Stromal Thickness (um), Epithelial Thickness
(um), Anterior Chamber Depth (mm), Posterior Tangential
Curvature (mm), Posterior Sagittal Curvature (mm), Posterior
Gaussian Curvature (mm), Anterior Elevation (mm), Posterior
Elevation (mm), Stromal Elevation (mm). We selected the
first 11 16 maps for our CNN models, focusing on those most
relevant. We excluded maps such as posterior sagittal and
posterior Gaussian curvature because the models did not
achieve satisfactory reconstruction performance for
these maps.

Data Preprocessing and Feature Engineering

Given the complex, high-dimensional nature of the
data, we applied several preprocessing and feature engineer-
ing steps to prepare the dataset for ML analysis.

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc.

Data Integration

We assembled 3 primary data sources for each patient:
refractive data, MS-39 CSV files containing corneal param-
eters and MS-39 topography maps.

Transformation of MS-39 CSV Data

The raw CSV files from the MS-39 device contain
multiple corneal parameters, including corneal thickness,
keratometry, and curvature. To extract meaningful informa-
tion, we computed several statistical measures for each
parameter: minimum, maximum, and mean values, variance,
25th and 75th percentiles (quant25 and quant75), skewness,
and kurtosis. This transformation resulted in 196 distinct
features per patient, capturing the variability and distribution
of corneal characteristics.

Topography Map Reconstruction

In addition to numerical data, we reconstructed 11 of
the 16 available MS-39 topography maps for analysis with
CNNs. These maps were normalized and resized to
a standard resolution to ensure compatibility with CNN
architectures.

Feature Selection for Prediction

Several outcome measurements were used to train Al
algorithms, which were either binary or quantitative.

Procedure success (binary feature) was determined
according to the postoperative change in visual acuity. We
calculated the difference in LogMAR visual acuity before and
after the procedure as a critical metric of surgical success. The
procedure was successful if the gain in corrected visual acuity
was strictly greater than 1 line.

The following key postoperative outcome quantitative
variables were also analyzed: LogMAR DCVA, refractive
cylinder, keratometry (K1, K2, Kmax), corneal asphericity
(Q-value), corneal coma.

Data Normalization

All continuous variables were normalized using z-score
normalization to standardize the input data. One-hot encoding
was applied to any categorical features.

Handling Missing Data
For missing data points, we used median imputation
techniques to preserve the sample size.

ML Models and Analysis

We used a combination of ML techniques for classifi-
cation and regression tasks, using cross-validation to ensure
robustness and generalizability. We also stratified target
variables for our Classification task. We split the dataset
using 70% training, 15% validation, and 15% testing and
applied 3-fold cross-validation to evaluate model
performance.

Classification Model
We developed a binary classification model to predict
whether a patient would gain more than 1 visual acuity line
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postoperatively. This task used Gradient-Boosting Classifiers
from the XGBoost library, which are highly effective for
structured tabular data. The input features included pre-
operative MS-39 data, refractive measurements, and derived
statistical metrics from the CSV files. We performed hyper-
parameter tuning using grid search with 3-fold cross-
validation. Performance was evaluated using the R? score
and Youden index. R> = 1 and Youden Index = 1 indicate
optimal results.

Regression Models

We used 1 primary regression model (CatBoost) to
predict specific postoperative outcomes (ie, LogMAR, kera-
tometry, asphericity). This gradient-boosting algorithm was
used to predict postoperative keratometry, LogMAR visual
acuity, and corneal asphericity. It effectively handles categorical
features and can model nonlinear relations between variables.

CNNs

To leverage the spatial information in the reconstructed
MS-39 topography maps, we developed CNN models to
analyze these maps and predict postoperative outcomes directly.
First, each variable from the MS-39 tool was transformed from
polar to Cartesian coordinates, resulting in a 256 X 256
Cartesian matrix for each variable. Gaps in the data were
interpolated using cubic interpolation. The images were then
rebuilt using the Matplotlib library in Python. Afterward, we
structured and integrated each patient image, labeling them with
their actual values so the model could compare them to its
predictions. The CNN model was based on a modified VGG16
architecture implemented with the PyTorch framework. The
CNN model consists of multiple convolutional layers, max-
pooling, and fully connected layers. Dropout was used to
prevent overfitting. We iterated our model while tweaking
different combinations of optimizers (Adam, AdamW, Ada-
grad) and learning rates. AdamW, paired with a le-2 learning
rate, yielded the best results.

Model Validation

We split the dataset using 70% training, 15% valida-
tion, and 15% testing and applied 3-fold cross-validation to
evaluate model performance.

Feature Importance

Feature importance was assessed using built-in methods
of XGBoost and CatBoost, allowing us to identify the most
important predictors of visual acuity gain. Principal Compo-
nent Analysis was applied to reduce dimensionality and
improve model performance.

Statistical Analysis

In addition to the ML analysis, we conducted conven-
tional statistical tests to understand the relationships between
variables better. We calculated the mean, median, and SD for all
continuous variables and the frequencies for categorical
variables. The Mann-Whitney U test was used to compare
quantitative variables between patient groups (eg, those who
gained more than 1 line of visual acuity vs. those who did not).
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Spearman rank correlation coefficients assessed the relation-
ships between corneal parameters and visual outcomes.

RESULTS

Study Population

The study included 120 eyes from 102 consecutive
patients diagnosed with keratoconus, including 59 female
(59%) and 43 male patients (41%). The average age at the
time of presentation was 33 years. Considering the Amsler-
Krumeich classification, there were 48 grade 1 keratoconus
(40%), 54 grade 2 (45%), 15 grade 3 (12.5%), and 3 grade 4
(2.5%). Out of 120 procedures, 111 eyes (92.5%) underwent
implantation of asymmetric ring segments, including fourteen
300-pum thick segments (12.6%) and eighty-seven 250-um
thick segments (78.4%), nine 200-um thick segments (8.1%),
and one 150-pum thick segment (0.9%), with the following arc
length: 160 degrees (71, 64.0%) and 150 degrees (40, 36.0%).
Nine eyes (7.5%) received symmetric segments, including
seven 250-um thick segments (77.8%), one 200-um thick
segment (11.1%), and one 150-um thick segment (11.1%),
with the following arc length: 160 degrees (8, 88.9%) and 150
degrees (1, 11.1%). No intraoperative or postoperative
complications were reported during the follow-up.

Descriptive Data Summary

Table 1 shows the eye characteristics before and after
ring segment implantation. Postoperatively, a significant
improvement was observed in DCVA, with an average gain
of 2.0 = 1.4 lines. Out of 120 eyes, 88 (73.4%) had an
improvement of at least 2 lines (range +2 to +7 lines), 31
(25.8%) had no improvement (range —1 to +1 line), and 1 eye
(0.8%) lost 2 lines of DCVA. The refractive cylinder
decreased by 1.84 = 2.06 D on average. The mean
keratometry decreased by 2.86 * 4.26 D, and the minimum
corneal thickness increased by 17.3 * 13.5 um (approxi-
mately 4%) on average. The asphericity index (Q-value) and
coma aberration decreased by, respectively, 0.50 + 0.45 and
0.68 + 0.74 um on average.

Classification Model Performance

The Gradient-Boosting Classifiers from the XGBoost
library showed excellent performance in predicting whether
patients would gain strictly more than 1 line of visual acuity
postoperatively (R, 1.0; Youden Index, 1.0). These results
indicate perfect discrimination between the 2 patient groups,
though, due to the small sample size, caution should be
exercised regarding potential overfitting. Table 2 shows the
10 most important parameters in differentiating patients with
improved visual acuity and those without vision improvement.

Regression Model Performance

The CatBoost regression models demonstrated strong
predictive capabilities for postoperative visual outcomes.
LogMAR DCVA: the mean absolute error (MAE) was 0.07
corresponding to approximately 0.7 lines of visual acuity,

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc.



Cornea * Volume 00, Number 00, Month 2025

Machine Learning for Predicting Outcomes of ISR surgery

TABLE 1. Preoperative and Postoperative Characteristics of 120 Keratoconus Eyes With Intracorneal Ring Segment Implantation

Pre-operative Assessment Postoperative Assessment Difference P (Wilcoxon Signed-Rank Test)

DCVA (LogMAR) 0.30 = 0.19 (20/32+1.9 line) 0.10 = 0.12 (20/25+1.2 line) 0.20 = 0.14 (+2.0+1.4 lines) <0.000001
Sphere (D) —2.20 £ 2.78 —0.61 = 2.59 1.58 * 2.60 <0.000001
Cylinder (D) —3.65 * 1.87 —1.80 = 1.10 1.84 = 2.06 <0.000001
SE (D) —4.03 = 3.07 —1.53 * 2.67 2.51 = 2.80 <0.000001
Kmean (D) 48.03 = 3.30 45.54 = 3.08 —2.86 = 4.26 <0.000001
Kmax (D) 59.97 = 37.59 59.47 £ 7.30 —0.50 * 37.80 0.001

ThkMin (pm) 436 * 35.72 454 + 3599 17.3 £ 13.5 <<0.000001
Q value —0.96 = 0.49 —0.46 * 0.63 0.50 = 0.45 <0.000001
Coma (pm) 1.75 = 0.71 1.06 = 0.60 —0.68 + 0.74 <0.000001

The mean values and their SD are shown.

Coma, total coma centered on the pupil within the central 5 mm; Kmean, mean keratometry of the central 3 mm; Kmax, maximum keratometry; SE, spherical equivalence;
ThkMin, minimum corneal thickness; Q value, asphericity index of the anterior surface of the central 8 mm.

with an R? of 0.59, indicating that 59% of the variance in
postoperative visual acuity was explained by preoperative
data (Fig. 1). This result is nuanced with a 0.099 (0.99 line)
root mean square error (RMSE), which penalizes high errors.
Mean Keratometry: the model achieved an R? of 0.76,
indicating that the pre-operative data could explain 76% of
the variance in postoperative keratometry. MAE (1.08 D) and
RMSE (1.52 D) confirmed the model’s robust predictive
power for this metric (Fig. 2). Corneal Asphericity (Q-value):
R? was 0.54 with a 0.29-MAE and a 0.38-RMSE, suggesting
moderate predictive capability for this output(Fig. 3).

CNN Performance

The CNN models demonstrated fewer promising results
than traditional ML models. For LogMAR DCVA, the CNN
model achieved a test R of 0.10, with a test RMSE of 0.11
(1.1 line) and a test MAE of 0.09 (0.9 line), indicating
moderate predictive accuracy. Regarding Mean Keratometry,
predictions featured a lower R? of 0.05, with a test RMSE of
2.10 D and a test MAE of 1.84 D, reflecting less precise
performance. Concerning Q-Value, the model’s performance

was the weakest, with an R 0of 0.02, a test RMSE of 0.61, and
a test MAE of 0.49, highlighting significant challenges in
prediction accuracy for this metric.

CNN architecture was particularly effective at capturing
spatial patterns in the corneal maps that were not evident in
the scalar features used in the traditional ML models.

Table 3 compares the performance of CatBoost and
CNN models across different predictive tasks, including
postoperative visual acuity (LogMAR DCVA), mean kera-
tometry, and corneal asphericity (Q-value). The CatBoost
model demonstrated superior accuracy for all targets, partic-
ularly for predicting keratometry (R? = 0.76) and visual acuity
(R? = 0.59, MAE = 0.7 lines). In contrast, the CNN model
showed lower predictive performance.

Feature Importance

The top 10 most critical preoperative features contrib-
uting to the model’s predictions for postoperative LogMAR
were ranked by relative importance (Fig. 1). The LogMAR
DCVA demonstrated the highest importance, followed by the
minimum anterior elevation and the asymmetrical ring type.

TABLE 2. Ten Most Important Predictive Factors of Postoperative Visual Improvement

Eyes With at Least 2 Lines of Visual

Eyes With 1 Line or Less of Visual

Feature Improvement (n = 88) Improvement (n = 32) P*
LogMAR DCVA 0.37 £ 0.19 (20/46 + 1.9 line) 0.14 = 0.09 (20/28 + 0.9 line) <0.0001
Minimum anterior elevation (pum) 0.00 = 0.00 0.00 = 0.00 0.44
Asymmetric ferrara ring 83/88 (94%) 28/32 (87%) 0.24
Minimum anterior chamber depth (mm) 1.01 = 0.27 1.00 = 0.35 0.63
Steep keratometry (D) 50.98 = 3.65 49.29 * 3.46 0.02
Minimum stromal elevation (pm) 0.05 = 0.01 0.05 = 0.01 0.31
75th percentile of the posterior tangential 8.26 = 1.29 857 = 1.17 0.07
radius of curvature (mm)

75th percentile of the stromal elevation (pm) 0.99 = 0.11 1.01 = 0.11 0.22
Corneal thickness skewness (jtm) 0.44 = 0.31 0.38 £ 0.31 0.21
Minimum posterior Gaussian refractive 0.38 = 0.31 428 = 0.55 0.16

power (D)

The features are ranked by importance in the predictive model. For quantitative features, the mean values and their SD are shown. For categorical features, numbers and

percentages are shown.

*Mann-Whitney test for quantitative features, Fisher exact test for qualitative features.

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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LogMAR: Predictions vs Observed Values
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FIGURE 1. LogMAR distance-corrected visual acuity in the test set. A, Predicted versus observed values (CatBoost Model). Blue
dots represent CatBoost predictions compared with observed postoperative DCVA values. The red dashed line shows a LOWESS
(locally weighted scatterplot smoothing) fit to detect potential nonlinear deviations from the ideal prediction line (y = x). B, Top
10 most important preoperative features in the model. Based on their importance score, this bar chart ranks the top 10 most
important features contributing to the model’s performance.
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Keratometry: Predictions vs Observed Values
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FIGURE 2. Mean keratometry in the test set. A, Predicted versus observed values (CatBoost model). Blue dots represent CatBoost
predictions compared with observed postoperative DCVA values. The red dashed line shows a LOWESS (locally weighted scat-
terplot smoothing) fit to detect potential nonlinear deviations from the ideal prediction line (y = x). B, Top 10 most important

preoperative features in the model.
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FIGURE 3. Asphericity (Q) in the test set. A, Predicted versus observed values (CatBoost model). Blue dots represent CatBoost
predictions compared with observed postoperative DCVA values. The red dashed line shows a LOWESS (locally weighted scat-
terplot smoothing) fit to detect potential nonlinear deviations from the ideal prediction line (y = x). B, Top 10 most important

preoperative features in the model.
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TABLE 3. Results of Machine Learning Algorithms and
Convolutional Neural Networks for Predicting Postoperative
Visual Acuity, Keratometry, and Corneal Asphericity

Mean Absolute Root Mean
Error Square Error

0.07 (0.7 line) 0.099 (0.99 line)

0.09 (0.9 line) 0.11 (1.1 line)

Feature Model R?

LogMAR DCVA CatBoost 0.59
LogMAR DCVA CNN  0.10

Mean keratometry CatBoost 0.76 1.08 2.10
D)

Mean keratometry CNN  0.05 1.84 2.10
D)

Asphericity CatBoost 0.54 0.29 0.38
(Q-value)

Asphericity CNN  0.02 0.49 0.61
(Q-value)

Figure 2 shows the top 10 most important features for
predicting postoperative mean Kkeratometry. Preoperative
mean keratometry was the most important feature, substan-
tially impacting the model’s predictive accuracy.

Figure 3 shows the top 10 most important features for
postoperative Q-value predictions. The stromal elevation
kurtosis was the most important feature, closely followed
by the stromal elevation skewness. In addition, the recon-
structed topography maps contributed to improved predic-
tions when incorporated into the CNN models.

DISCUSSION

In the present study, ML models could efficiently
predict which patients would benefit from intrastromal ring
segment implantation. Predicting whether a keratoconus eye
will significantly improve vision after ring segment implan-
tation is essential for selecting candidates for surgery and
avoiding unsuccessful procedures. The Gradient Boosting
Classifier model showed perfect performance in predicting
whether patients would gain strictly more than 1 line of visual
acuity postoperatively (R?, 1.0; Youden Index, 1.0, meaning
all test observations were correctly classified). R? represents
the proportion of variability in postoperative visual acuity
explained by the model, indicating its goodness of fit, while
the Youden Index combines sensitivity and specificity to
assess the model’s classification performance. The 5 param-
eters featuring the highest importance in the model were the
preoperative DCVA, the minimum value of the anterior
elevation, whether an asymmetric ring had been used, the
minimum value of the anterior chamber depth, and the steep
keratometry of the central 3 mm. Patients with preoperative
poorer visual acuity and steeper corneas and who received
asymmetric rings were more likely to improve vision after
surgery. The Amsler-Krumeich classification and keratoconus
pattern types (central nipple, crescent, duck, etc.) provided by
the MS-39 were included in the dataset, but they showed
limited predictive importance in our models.

This study highlights the potential of ML models,
particularly CatBoost, in predicting postoperative visual
acuity gains in patients with keratoconus undergoing intra-
corneal ring segment implantation. The models demonstrated

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc.

significant predictive accuracy, with R? values reaching 0.76
for keratometry and mean absolute errors of less than 1 line
on the LogMAR chart for visual acuity. These results agree
with previous studies, such as those conducted by Vega-
Estrada et al*? and Valdés-Mas et al,3! which have shown that
artificial neural networks and ML algorithms can improve the
predictability of outcomes like corneal curvature (K1) and
astigmatism after ring segment implantation. The present
study provides further important information by predicting
the improvement in visual acuity.

The improvement of the ML models in this study,
particularly in predicting visual acuity and keratometric
changes, underscores the value of advanced analytics in
clinical ophthalmology. For example, Vega-Estrada et al
demonstrated that ANN-guided ring segment implantation
led to better spectacle-corrected distance visual acuity and
a significant reduction in coma-like aberrations compared to
traditional nomograms. Similarly, Valdés-Mas et al high-
lighted the importance of key parameters like keratometry and
the depth position of the ring in accurately predicting
postsurgical outcomes in patients with keratoconus. Lyra
et al’? evaluated the predictability of asphericity and average
keratometry in keratoconus patients after ring segment
implantation using Al. The study demonstrated that compu-
tational models could enhance accuracy and support better
surgical decision-making, ultimately improving clinical out-
comes for patients with keratoconus. In the present study, we
could predict which patients will likely achieve significant
visual improvement from the surgery, allowing for a more
accurate selection of candidates who would benefit from the
procedure.

The feature importance analysis from our study under-
scores the significant role of specific corneal measurements—
keratometry values (K1, K2, Kmax), corneal asphericity, and
pre-operative LogMAR visual acuity—in predicting post-
operative visual outcomes. Interestingly, the analysis indi-
cates a minimal contribution from the parameters related to
the ring itself, such as those describing its dimensions or
placement. This suggests that while the rings are integral to
the surgical procedure, their variations may not significantly
influence the outcome as much as the intrinsic properties of
the cornea itself and the preoperative vision level.!!-33

The outcomes from the descriptive data are consistent
with findings reported in other studies on this topic,3*3°
reinforcing their validity.

However, despite the promising results, this study
shares common limitations with other Al-based research.
First, the small sample size results in low power, and the
single-center nature of the study limits the generalizability of
the findings. While statistically significant, the results would
benefit from validation in more extensive, multicenter trials.
This issue of limited data size is frequently encountered in Al
research. A larger dataset would likely reduce model variance
and enhance the robustness of predictions, especially when
evaluating complex conditions like keratoconus. Our results
only apply to eyes treated with a single ring ranging from 150
to 160 degrees in angular length and 150 to 300 pum in
thickness. Consequently, our models cannot predict post-
operative results if rings featuring other sizes and lengths
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were to be used. If our models were to be used in different
centers, a local training set would be needed to fit and validate
the models.

Another important limitation is the potential overfitting
observed in some models. The high performance of the
XGBoost classifier (R> = 1.0, Youden Index = 1.0) suggests
that the model may have learned patterns too specific to the
training dataset, reducing its generalization ability. For this
reason, we chose to present the CatBoost model results,
which, although less optimal, provide a more realistic and
reliable estimate of predictive performance given the limited
sample size. External validation on larger, more diverse
patient populations is necessary to confirm its robustness
and ensure clinical applicability.

Moreover, the black-box nature of specific ML
models, particularly CNNs, presents another challenge.
Although CNNs have shown superior performance in
image-based predictions, their lack of interpretability limits
immediate clinical adoption. This limitation was also noted
in Ferrara et al’s study, where linear regression models were
favored for their transparency despite potentially lower
predictive power compared to more complex algorithms
like CNNs.36-37 In the present study, ML models were more
efficient than CNN in predicting postoperative visual
acuity, mean keratometry, and corneal asphericity. The
small data set (CNNs typically require large amounts of
data for correct training) and data noise (ie, corneal
topographic maps may contain artifacts or inaccurate
measurements that may degrade CNN performance) may
explain this unexpected result in Table 3.

In addition, the need for calibration from ML models
poses a critical limitation in ophthalmology. Many ML
models lack proper calibration. Conformal prediction techni-
ques address this limitation by providing valid prediction
intervals, thereby enhancing the trustworthiness of model
outputs.

Despite these challenges, the study marks a significant
step forward in using ML for keratoconus treatment planning.

In conclusion, ML models hold great promise for
improving personalized treatment planning in patients with
keratoconus undergoing ring segment implantation. As data
sets grow and model transparency improves, these tools
could become integral to clinical practice, enabling oph-
thalmologists to predict surgical outcomes better, optimize
patient care, and reduce variability in postoperative results.
Future research should focus on expanding data sets,
validating findings across multiple centers, and enhancing
the interpretability of ML models to facilitate broader
clinical acceptance.
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